Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses

Author:

Endo M1,Tipper J L1,Barton D C1,Stone M H1,Ingham E1,Fisher J1

Affiliation:

1. University of Leeds Medical and Biological Engineering UK

Abstract

The wear, wear debris and functional biological activity of non-crosslinked and moderately crosslinked ultrahigh molecular weight polyethylene (UHMWPE) acetabular cups have been compared when articulating against smooth and intentionally scratched femoral heads. Volumetric wear rates were determined in a hip joint simulator and the debris was isolated from the lubricant and characterized by the percentage number and volumetric concentration as a function of particle size. The volumetric concentration was integrated with the biological activity function determined from in vitro cell culture studies to predict an index of specific biological activity (SBA). The product of specific biological activity and volumetric wear rate was used to determine the index of functional biological activity (FBA). On smooth femoral heads the crosslinked UHMWPE had a 30 per cent lower wear rate, but it had a greater percentage volume of smaller, more biologically active particles, which resulted in a similar index of FBA compared with the non-crosslinked material. On the scratched femoral heads the volumetric wear rate was three times higher for the moderately crosslinked UHMWPE and two times higher for the non-crosslinked UHMWPE compared with the smooth femoral heads. This resulted in a higher wear rate for the moderately crosslinked material on the scratched femoral heads. All the differences in wear rate were statistically significant. There were only small differences in particle volume concentration distributions, and this resulted in similar indices of FBA which were approximately twice the values of those found on the smooth femoral heads. Both materials showed lower wear and FBA than for previously studied aged and oxidized UHMWPE gamma irradiated in air. However, this study did not reveal any advantage in terms of predicted FBA for moderately crosslinked UHMWPE compared with non-crosslinked UHMWPE.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3