Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions

Author:

Bell C J1,Ingham E1,Fisher J1

Affiliation:

1. University of Leeds Institute of Medical and Biological Engineering, School of Mechanical Engineering Leeds, UK

Abstract

Therapeutic lubricant injections of hyaluronic acid are a relatively recent treatment for osteoarthritis. Their efficacy however, in vivo has been subject to much debate. Frictional properties of cartilage-cartilage contacts under both static and dynamic loading conditions have been investigated, using healthy cartilage and cartilage with a physically disrupted surface, with and without the addition of a therapeutic lubricant, hyaluronic acid. Most of the cartilage friction models produced typical time-dependent loading curves, with a rise in static friction with loading time. For the dynamic loading conditions the rise in friction with loading time was dependent on the spatial (and time) variation in the load on the cartilage plate. For sliding distances of 4 mm or greater, when the cartilage plate was unloaded during sliding, the dynamic friction remained low whereas, with shorter sliding distances, the dynamic friction increased with increasing loading time. Static friction was higher than dynamic friction (under the same tribological conditions). The ‘damaged’ cartilage models produced higher friction than healthy cartilage under equivalent tribological conditions. It was shown that hyaluronic acid was an effective boundary lubricant for articular cartilage under static conditions with both healthy and damaged cartilage surfaces. Hyaluronic acid was less effective under dynamic conditions. However, these dynamic conditions had low friction values with the control lubricant because of the effectiveness of the intrinsic biphasic lubrication of the cartilage. It was only under the tribological conditions in which the cartilage friction was higher and rising with increasing loading time because of depletion of the intrinsic biphasic lubrication, that the role of hyaluronic acid as an effective therapeutic lubricant was demonstrated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3