Effect of stair descent loading on ultra-high molecular weight polyethylene wear in a force-controlled knee simulator

Author:

Benson L C1,DesJardins J D1,Harman M K2,LaBerge M1

Affiliation:

1. Clemson University Department of Bioengineering Clemson, South Carolina, USA

2. The Biomotion Foundation West Palm Beach, Florida, USA

Abstract

A loading protocol approximating forces, torques and motions at the knee during stair descent was developed from previously published data for input into a force-controlled knee simulator. A set of total knee replacements (TKRs) was subjected to standard walking cycles and stair descent cycles at a ratio of 70:1 for 5 million cycles. Another set of implants with similar articular geometry and the same ultra-high molecular weight polyethylene (UHMWPE) resin (GUR 415), sterilization and packaging was tested with standard walking cycles only. Implant kinematics, gravimetric wear and surface roughness of the UHMWPE inserts were analysed for both sets of implants. Contact stresses were calculated for both loading protocols using a Hertzian line contact model. Significantly greater weight loss ( p < 0.05) and more severe surface damage of UHMWPE inserts resulted with the walking + stair descent loading protocol compared to walking cycles only. Anterior-posterior (AP) tibiofemoral contact point displacements were lower during stair descent than walking, but not significantly different (p = 0.05). Contact stresses were significantly higher during stair descent than walking, owing to higher axial loads and the smaller radius of curvature of the femoral components at higher flexion angles. High contact stresses on UHMWPE components are likely to accelerate the fatigue of the material, resulting in more severe wear, similar to what is observed in retrieved implants. Thus the inclusion of loading protocols for activities of daily living in addition to walking is warranted for more realistic in vitro testing of TKRs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3