Affiliation:
1. Radboud University Nijmegen Medical Centre, Orthopaedic Research Lab, Nijmegen, The Netherlands
Abstract
For testing purposes of prostheses at a preclinical stage, it is very valuable to have a generic modelling tool, which can be used to optimize implant features and to avoid poor designs being launched on to the market. The modelling tool should be fast, efficient, and multipurpose in nature; a finite element model is well suited to the purpose. The question posed in this study was whether it was possible to develop a mathematically fast and stable dynamic finite element model of a knee joint after total knee arthroplasty that would predict data comparable with published data in terms of (a) laxities and ligament behaviour, and (b) joint kinematics. The soft tissue structures were modelled using a relatively simple, but very stable, composite model consisting of a band reinforced with fibres. Ligament recruitment and balancing was tested with laxity simulations. The tibial and patellar kinematics were simulated during flexion-extension. An implicit mathematical formulation was used. Joint kinematics, joint laxities, and ligament recruitment patterns were predicted realistically. The kinematics were very reproducible and stable during consecutive flexion-extension cycles. Hence, the model is suitable for the evaluation of prosthesis design, prosthesis alignment, ligament behaviour, and surgical parameters with respect to the biomechanical behaviour of the knee.
Subject
Mechanical Engineering,General Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献