A three-dimensional finite element model from computed tomography data: A semi-automated method

Author:

Cattaneo P M1,Dalstra M1,Frich L H1

Affiliation:

1. Orthopaedic Research Laboratory, Aarhus University Hospital, Denmark

Abstract

Three-dimensional finite element analysis is one of the best ways to assess stress and strain distributions in complex bone structures. However, accuracy in the results may be achieved only when accurate input information is given. A semi-automated method to generate a finite element (FE) model using data retrieved from computed tomography (CT) was developed. Due to its complex and irregular shape, the glenoid part of a left embalmed scapula bone was chosen as working material. CT data were retrieved using a standard clinical CT scanner (Siemens Somatom Plus 2, Siemens AG, Germany). This was done to produce a method that could later be utilized to generate a patient-specific FE model. Different methods of converting Hounsfield unit (HU) values to apparent densities and subsequently to Young's moduli were tested. All the models obtained were loaded using three-dimensional loading conditions taken from literature, corresponding to an arm abduction of 90°. Additional models with different amounts of elements were generated to verify convergence. Direct comparison between the models showed that the best method to convert HU values directly to apparent densities was to use different equations for cancellous and cortical bone. In this study, a reliable method of determining both geometrical data and bone properties from patient CT scans for the semi-automated generation of an FE model is presented.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3