Precision and Accuracy in Ceramic-on-Ceramic Wear Analyses: Influence of Simulator Test Duration

Author:

Richardson H A1,Clarke I C1,Williams P1,Donaldson T1,Oonishi H2

Affiliation:

1. Orthopaedic Research Center, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, California, USA

2. H Oonishi Memorial Joint Replacement Institute, Tominaga Hospital, Osaka, Japan

Abstract

In this, the first report of precision and accuracy in simulator studies, ceramic-ceramic implants with ultra-low wear trends represented a relevant wear model. The effect of test durations was examined in a standard simulator test mode on the quality of the linear regression trends, the average wear estimates, and the amount of noise in the data. Three sets of diametral tolerances were compared in 28 mm diameter alumina implants. The authors' hypothesis was that wear data would be significantly improved with increased test durations. The average wear rates varied little with test duration, the biggest change amounting to only 30 and 15 per cent decreases in the wear estimate by 10 and 14 million cycles respectively. The most satisfactory improvement in the study was the decrease in variance (noise) with increasing duration, ±200 per cent at 5 million cycles reduced to ±55 per cent at 14 million cycles. The quality of the linear regression coefficients improved 150 per cent by 10 million cycles and 250 per cent by 14 million cycles. Overall the ceramic implants with highest diametral tolerances showed the least wear (15 per cent less, but not statistically significant). However, given such low wear rates for alumina liners, it was unlikely that any differences owing to diametral tolerances would be clinically significant in the typical patient.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hip joint replacements;Joint Replacement in the Human Body;2024

2. Biotribology of the Total Hip Replacement – Review of the Current Bearing Surfaces;Romanian Journal of Military Medicine;2023-01-08

3. Mechanical testing for soft and hard tissue implants;Biocompatibility and Performance of Medical Devices;2020

4. Wear at the taper‐trunnion junction of contemporary ceramic‐on‐ceramic hips shown in a multistation hip simulator;Journal of Biomedical Materials Research Part B: Applied Biomaterials;2018-09-05

5. Mechanical testing for soft and hard tissue implants;Biocompatibility and Performance of Medical Devices;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3