The effect of kinematic conditions on the wear of ultra-high molecular weight polyethylene (UHMWPE) in orthopaedic bearing applications

Author:

Cornwall G B1,Bryant J T2,Hansson C M3

Affiliation:

1. Marco Pore San Diego, California, USA

2. Human Mobility Research Centre, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada

3. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada

Abstract

It is known that wear mechanisms differ between the ultra-high molecular weight polyethylene (UHMWPE) components of total hip replacement (THR) and total knee replacement (TKR). The difference in relative contact position or ‘kinematic conditions of contact’ between the metal and polymer components is thought to contribute to the contrast in observed wear mechanisms. A reciprocating wear tester was used to evaluate three basic kinematic contact conditions: sliding, in which the relative contact position on the polymer remains stationary; gliding, where the contact position on the polymer reciprocates; and rolling, where the contact position on the polymer varies and the relative velocities of both components are equal. All static load tests used cast Co—Cr alloy and irradiated Chirulen® UHMWPE in a 37 °C environment lubricated with bovine serum albumin. UHMWPE test sample wear was measured gravi-metrically at intervals of 600000 cycles. The results indicated a difference in wear factor (volume lost due to wear per unit load per unit sliding distance) between the three groups with varying relative motion. The study indicates that screening tests which evaluate wear properties of new materials for total joint replacement should reflect the different kinematic contact conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3