Time-dependent mechanical behaviour of the periodontal ligament

Author:

van Driel W D1,van Leeuwen E J1,Von den Hoff J W1,Maltha J C1,Kuijpers-Jagtman A M1

Affiliation:

1. School of Dental Sciences, University of Nijmegen Department of Orthodontics and Oral Biology The Netherlands

Abstract

The process of tooth displacement in response to orthodontic forces is thought to be induced by the stresses and strains in the periodontium. The mechanical force on the tooth is transmitted to the alveolar bone through a layer of soft connective tissue, the periodontal ligament. Stress and/or strain distribution in this layer must be derived from mathematical models, such as the finite element method, because it cannot be measured directly in a non-destructive way. The material behaviour of the constituent tissues is required as an input for such a model. The purpose of this study was to determine the time-dependent mechanical behaviour of the periodontal ligament due to orthodontic loading of a tooth. Therefore, in vivo experiments were performed on beagle dogs. The experimental configuration was simulated in a finite element model to estimate the poroelastic material properties for the periodontal ligament. The experiments showed a two-step response: an instantaneous displacement of 14.10 ± 3.21 μm within 4 s and a more gradual (creep) displacement reaching a maximum of 60.00 ± 9.92 μm after 5 h. This response fitted excellently in the finite element model when 21 per cent of the ligament volume was assigned a permeability of 1.0 × 10−14m4/Ns, the remaining 97 per cent was assigned a permeability of 2.5 × 10−17 m4/N s. A tissue elastic modulus of 0.015 ± 0.001 MPa was estimated. Our results indicate that fluid compartments within the periodontal ligament play an important role in the transmission and damping of forces acting on teeth.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3