Development of a computer model to predict pressure generation around hip replacement stems

Author:

Dunne N J1,Orr J F2

Affiliation:

1. Dublin City University Department of Mechanical and Manufacturing Engineering Dublin, Republic of Ireland

2. The Queen's University of Belfast Department of Mechanical and Manufacturing Engineering Northern Ireland, UK

Abstract

Cemented fixation of hip replacements is the elective choice of many orthopaedic surgeons. The cement is an acrylic polymer which grouts the prostheses into the medullary cavity of the femur. Cement pressure is accepted as a significant parameter in determining the strength of cement/bone interfaces and hence preventing loosening of the prostheses. The aim of this work was to allow optimal design of the intramedullary stem of a hip prosthesis through knowledge of the flow characteristics of curing bone cement which can be used to predict pressures achieved during insertion of the femoral stem. The viscosity of the cement is a vital property determining the cement flow and hence cement interdigitation into bone. The apparent viscosities, ηa, of three commercial bone cements were determined with respect to time by extrusion of the curing cement through a parallel die of known geometry under selected pressures. Theoretical models were developed and implemented in a computer program to describe cement flow in three models each of increasing complexity: (a) a simple parallel cylinder, (b) a tapered conical mandrel and (c) an actual femoral prosthesis, the latter models being complicated by extensional effects as annular areas increase. Predicted pressures were close to those measured experimentally, maximum pressures being in the range 10-160 kPa which may be compared with a threshold of 76 kPa proposed for effective interdigitation with cancellous bone. The theoretical model allows the prosthesis/bone geometry of an individual patient to be evaluated in terms of probable pressure distributions in the medullary cavity during cemented fixation and can guide stem design with reference to preparation of the medullary canal. It is proposed that these models may assist retrospective studies of failed components and contribute to implant selection, or to making informed selection from options in custom hip prosthesis designs to achieve optimum cement pressurization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3