The biomechanics of vertebroplasty: A review

Author:

Wilcox R K1

Affiliation:

1. University of Leeds School of Mechanical Engineering Leeds LS2 9JT, UK

Abstract

Percutaneous vertebroplasty and kyphoplasty are being used extensively in the United States for the treatment of osteoporotic vertebral compression fractures. Although short-term clinical outcomes appear favourable, long-term data are not yet available and it is becoming increasingly important to understand how the underlying biomechanics of the spine are altered by the procedure. In vitro experimental studies have investigated the effect of cement augmentation on individual vertebra and short spinal segments. For individual vertebra, vertebroplasty appears to increase or return strength to the prefracture level, whereas the stiffness is not always restored. However for multiple-vertebra segments, the strength of the unit as a whole appears to decrease, with failure occurring in the non-augmented vertebrae. Both finite element (FE) and experimental studies have shown that the volume of cement injected affects the restoration of strength and stiffness. The type of cement appears to have less of an effect. Although biomechanical studies of the vertebroplasty process have indicated that the procedure has the potential to restore vertebral strength and stiffness, further work is necessary to understand fully the effects of the augmentation process on the surrounding structures if the treatment is to be fully optimized. This paper is a review of the biomechanical data available on vertebroplasty.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3