Affiliation:
1. School of Mechanics and Systems Engineering, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
Abstract
The study presented in this article examined the thermodynamic performance of a proposed system constructed from Brayton, inverse Brayton, and steam Rankine cycles. The theoretical examination was performed by varying the Brayton cycle pressure ratio for different values of inlet pressure and expansion pressures of the inverse Brayton cycle and for different ratios of the inverse Brayton power turbine mass flow to the gas generator mass flow. The results indicated that for the three values of mass flow ratio examined, better performance could be achieved when the proposed system is operated at high Brayton cycle pressure ratio (high maximum system temperature and the highest value of inverse Brayton cycle expansion pressure). It was revealed that in the case of the mass flow equal to 0.25, the proposed system achieved the highest value of Brayton cycle pressure ratio and attained a maximum thermal efficiency of 57.7 per cent.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献