Multi-objective optimization of a centrifugal compressor impeller through evolutionary algorithms

Author:

Kim J-H1,Choi J-H2,Husain A1,Kim K-Y1

Affiliation:

1. Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea

2. Energy Equipment R&D Center, Samsung Techwin, Seongnam, Republic of Korea

Abstract

This paper presents the design optimization of a centrifugal compressor impeller with a hybrid multi-objective evolutionary algorithm. Reynolds-averaged Navier—Stokes (RANS) equations are solved with the shear stress transport turbulence model as a turbulence closure model. Flow analysis is performed on a hexahedral grid through a finite-volume solver. Two objectives, viz., the isentropic efficiency and the total pressure ratio (PR), are selected with four design variables that define the impeller hub and shroud contours in meridian terms for optimizing the system. The validation of numerical results was performed through experimental data for the total PR and the isentropic efficiency. Objective-function values are numerically evaluated through the RANS analysis at design points that are selected through the Latin hypercube sampling method. A fast and elitist non-dominated sorting genetic algorithm (NSGA-II) with an ε-constraint strategy for local search coupled with a surrogate model is used for multi-objective optimization. The surrogate model, the radial basis neural network, is trained on discrete numerical solutions by the execution of leave-one-out cross-validation for the dataset. The trade-off between the two objectives has been ascertained and discussed in the light of Pareto-optimal solutions. The optimization results show that the isentropic efficiency and the total PR are enhanced at both design and off-design conditions through multi-objective optimization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3