Shape optimization of an axial compressor blade by multi-objective genetic algorithm

Author:

Samad A1,Kim K-Y1

Affiliation:

1. Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea

Abstract

In this study, a multi-objective optimization of an axial compressor rotor blade has been performed through genetic algorithm with total pressure and adiabatic efficiency as objective functions. The non-dominated sorting of genetic algorithm-II has been implemented and confidence check has been performed at k-means clustered points among all the Pareto-optimal solutions. Reynolds-averaged Navier—Stokes equations are solved to obtain the objective function and flow field inside the compressor annulus. The objective functions are used to generate Pareto-optimal front. The design variables are selected from blade lean and thickness through the Bezier polynomial formulation. By this optimization, maximum efficiency and total pressure are increased by 1.76 and 0.41 per cent, respectively, when two extreme clustered points are considered as optimal designs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3