Storage capacity and containment issues for carbon dioxide capture and geological storage on the UK continental shelf

Author:

Holloway S1

Affiliation:

1. British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK.,

Abstract

Carbon dioxide (CO2) can be stored in geological formations beneath the UK continental shelf (UKCS) as a greenhouse gas mitigation option. It can be trapped in subsurface reservoirs in structural or stratigraphic traps beneath cap rocks, as a residual CO2 saturation in pore spaces along the CO2 migration path within the reservoir rock, by dissolution into the native pore fluid (most commonly brine), by reaction of acidified groundwater with mineral components of the reservoir rock, or by adsorption onto surfaces within the reservoir rock, e.g. onto the carbonaceous macerals that are the principal components of coal. Estimates of the CO2 storage capacity of oil and gas fields on the UKCS suggest that they could store between 1200 and 3500×106 t of CO2 and up to 6100×106 t CO2, respectively. Estimating the regional CO2 storage potential of saline water-bearing sedimentary rocks is resource-intensive and no UK estimates have yet taken into account all the factors that should be considered. Existing studies estimate the pore volume and the likely CO2 saturation in the closed structures in a potential reservoir formation but do not take account of the potentially limiting regional pressure rise likely to occur as a result of the very large-scale CO2 injection that would be necessary to make an impact on national emissions. There is undoubtedly great storage potential in the saline water-bearing reservoir rocks of the basins around the UK, but the real challenge for studies of aquifer CO2 storage capacity in the UK is perhaps not to estimate the total theoretical CO2 storage capacity, as this is not a particularly meaningful number. Rather it is to thoroughly investigate selected reservoirs perceived to have good storage potential to a standard where there is scientific consensus that the resulting storage capacity estimates are realistic. This will allow it to be considered as closer to the status of a reserve rather than a resource and will help define the scope for CO2 capture and storage in the UK.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3