Finite-Thermal Reservoir Effects on Ecologically Optimized Closed Regenerative Joule-Brayton Power Cycles

Author:

Khaliq A1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India,

Abstract

A finite-time thermodynamic analysis based on a new kind of optimization criterion has been carried out for an endoreversible and regenerative Joule-Brayton power cycle coupled with variable temperature thermal reservoirs. The optimal performance and design parameters that maximize the ecological function are investigated. In this context, the optimal temperatures of the working fluid, the optimum power output, the optimum thermal efficiency, and the optimum second-law efficiency are determined in terms of technical parameters. Results are reported for the effect of regeneration, hot-cold temperature ratio, and the number of heat transfer units in hot and cold exchangers on the optimal performance parameters. The power and efficiency at maximum ecological function are found to be less than the maximum power and Curzon-Ahlborn efficiency. Power output increases significantly with increasing hot-cold side temperature ratio. However, it slightly increased as the number of heat transfer units in the regenerator increases. The optimization of ecological function leads to the improvement in exergetic efficiency and thermal efficiency, especially for low hot-cold side temperature ratios. Moreover, the thermal efficiency at maximum ecological function is less than the average of the finite time or maximum power efficiency and reversible Carnot efficiency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3