Dimensionless flow equations for dynamic simulation of turbomachine components and fluid systems

Author:

Puddu P1

Affiliation:

1. Department of Mechanical Engineering, University of Cagliari, Piazza D'Armi, 09123 — Cagliari, Italy,

Abstract

In this work, a dimensionless form of the equations of motion used for dynamic simulation of turbomachine components is presented. The dimensionless equations are obtained from the governing equations of unsteady compressible viscous one-dimensional flow by defining three variables of state that have a direct link with the variables measured in the experimental investigations: total pressure, total temperature, and the Mach number. The new dimensionless form of equations presents the characteristics of generality that makes it easy to apply to many fluid dynamic problems. The application of dimensionless equations to more complex systems can be simplified and made easier by using the lumped parameter discretization method. Another important feature of the dimensionless system of equations is that it can be solved explicitly without any iterative process within each step of integration, thus making it easier and faster during dynamic simulations. The equations can be further simplified in the case of stationary flows for which some examples of application are given in order to highlight the generality of the method and its ease of application.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbocharger Map Reduction for Control-Oriented Modeling;Journal of Dynamic Systems, Measurement, and Control;2014-04-04

2. A flow rate equation for subsonic Fanno flow;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2013-03-13

3. Pressure Change in Tee Branch Pipe in Oscillatory Flow;Advances in Mechanical Engineering;2013-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3