Stall inception and its control in an axial flow fan under dynamic inflow distortion

Author:

Salunkhe P B1,Pradeep A M1

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, India

Abstract

The present experimental study demonstrates the effects of clean and distorted inflow conditions on the performance and nature of stall inception in a single stage axial flow fan. A 90° distortion screen located upstream of the rotor leading edge was rotated up to 40 per cent of the rotor speed in the clockwise (co-rotation) and counterclockwise (counter-rotation) directions to generate dynamic inflow distortion. It was observed that the stall margin deteriorated substantially under co-rotating inflow distortion as compared to counter-rotating inflow distortion. The degradation in stall margin was about 15 per cent and 1.98 per cent under co- and counter-rotating inflow distortions, respectively. Tip injection was used as a means of enhancing the fan performance under distorted inflow. With tip injection under co-rotating inflow distortion, about 2.8 per cent improvement in stall margin was observed. The improvement in stall margin under counter-rotating inflow distortion with tip injection was 2.98 per cent. The unsteady static pressure traces show clear differences in the nature of stall inception under co- and counter-rotating inflow distortions. The stall inception occurs through long-length-scale disturbances under co-rotating inflow distortion, while the mode of stall inception under clean flow and counter-rotating inflow distortions was through short-length-scale disturbances. The nature of stall inception under dynamic inflow distortion with tip injection remains the same as without tip injection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Analysis of a Novel Casing Treatment in an Axial Flow Fan;Journal of Propulsion and Power;2024-07-01

2. Numerical investigations of mass-flux redistribution and performance prediction model on coupling effects of total pressure distortion-low Reynolds number in axial compressor;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2022-11-22

3. Investigation of the tip injection for stall control in a transonic compressor with inlet distortion;Journal of the Global Power and Propulsion Society;2021-02-24

4. Investigation of stall process flow field in transonic centrifugal compressor with volute;Aerospace Science and Technology;2018-10

5. Experimental investigations on instability evolution in a transonic compressor at different rotor speeds;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2015-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3