Clean coal technologies

Author:

McMullan J T1,Williams B C1,Sloan E P1

Affiliation:

1. University of Ulster, Coleraine Energy Research Centre Northern Ireland

Abstract

Power generation in Europe and elsewhere relies heavily on coal as the source of energy and this reliance will increase in the future as other fossil fuels become progressively more expensive. The existing stock of coal-fired power stations mainly use pulverized fuel boilers and present designs based on ultrasupercritical steam cycles are as efficient and as low in SOx and NOx emissions as is possible without incurring excessive additional costs. This paper examines the options for coal-based power generation technologies and compares their technical, environmental and economic performance. These options include atmospheric and pressurized fluidized bed combustion and a range of integrated gasification combined cycle systems. Integrated gasification combined cycles give good efficiency and very low emissions, but further optimization is required to make them economically attractive. Conceptual cycles based on pressurized pulverized combustion, dual fuel hybrid cycles, fuel cells and magnetohydrodynamics are also covered in outline.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference2 articles.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3