Power generation system using two models for an inertial confinement fusion reactor

Author:

Kien L. C.1,Harada N1

Affiliation:

1. Electrical Department, Graduate School of Engineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata, Japan

Abstract

In this study, the series cooling model and the parallel cooling model of inertial confinement fusion reactor were used as a heat source for driving the MHD/Gas Turbine combined power generation system. This reactor is designed with the first wall and the blanket, which are used to collect the products of fusion reactions (including X-ray, charged particles, and neutrons) and to convert the fusion energy into thermal energy. In the series cooling model, the coolant after being heated in the blanket is re-heated again in the first wall, therefore, > 2000 K working gas can be obtained. In the parallel cooling model, 1300-1700 K working gas was extracted from the blanket for driving the Gas Turbine cycle and high temperature 2000-2400 K working gas can be extracted from the first wall for driving the MHD cycle. The system using the series cooling model reached a highest plant efficiency of 58.34 per cent whereas the system using the parallel cooling model reached a highest plant efficiency of 57.49 per cent. It was found that the enthalpy extraction and the first wall output temperature both affected the fusion output power, therefore, the plant efficiency was greatly affected by these factors. With the increase of reactor output temperature, the plant efficiency increased, however, because of the temperature limitation of the Gas Turbine and blanket, an output temperature > 2400 K from reactor cannot be used.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference11 articles.

1. Duderstadt J. J., Moses G. A. Inertial Confinement Fusion, 1982 (John Wiley and Sons, New York), p. 32.

2. Duderstadt J. J., Moses G. A. Inertial Confinement Fusion, 1982 (John Wiley and Sons, New York), p. 312.

3. Adapting an X-Ray/Debris Shield to the Cascade ICF Power Plant: Neutronics Issues

4. Blanket Optimization Studies for Cascade

5. Power Conversion Options for the Cascade ICF Power Reactor

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technologies for tomorrow's electric power generation;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2009-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3