Low flowrate effects in a centrifugal pump impeller

Author:

Rose M G1

Affiliation:

1. LSM ETH-Zentrum ML H39, Sonneggstrasse 3, CH-8092 Zürich, Switzerland

Abstract

This paper reports on an experiment in a centrifugal pump at low flowrates. A variety of measurement techniques was used: laser Doppler anemometry (LDA), impeller vane surface static pressure, a three-hole pneumatic probe and time-resolved static pressure. Some light is shed on the flow mechanisms present in the impeller off design. Evidence is found of a recirculation vortex, at 49 per cent of design flow-rate, in the impeller flow passages. From design flowrate down to 46 per cent of design flowrate there is no evidence of rotating stall, which first appears at 43 per cent. The most likely interpretation of this result is that there is a three-cell rotating stall system with the cells rotating at approximately 43 per cent of the impeller rotational speed. At 20 per cent of the design flowrate, the fluid in the inlet pipe ‘prerotates’ with no time mean flow reversal, interpreted as a developed stall cell system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3