The influence of inlet flow distortion on the performance of a centrifugal compressor and the development of an improved inlet using numerical simulations

Author:

Kim Y1,Engeda A1,Aungier R2,Direnzi G2

Affiliation:

1. Michigan State University Turbomachinery Laboratory, Department of Mechanical Engineering East Lansing, Michigan, USA

2. Elliott Company Product Development Jeanette, Pennsylvania, USA

Abstract

The performance of centrifugal compressors can be seriously affected by inlet flow distortions due to the unsatisfactory nature of the inlet configuration and the resulting inlet flow structure. Experimental tests have been carried out for the comparison of centrifugal compressor stage efficiency with two different inlet configurations, one of which is straight with constant cross-sectional area and the other a 90° curved pipe with nozzle shape. The comparative test results indicated significant compressor stage performance difference between the two different inlet configurations and the details are discussed to understand the performance behaviour of the compressor exposed to the distorted flow from the bend inlet configuration. The experimental investigation motivated the need for a new inlet design as well as a clear picture of the detailed flow field in the existing inlet design using numerical simulations. Two design approaches are reported in this paper, one of which is the location of vanes and the other the length of the curvature radius. For a more effective design method, a generalized formula is developed for the optimum position and number of vanes in such a way that each divided flow passage with vanes shares the same pressure gradient in radial direction. Numerical simulation results are presented and discussed in terms of mass-averaged parameters and flow structures, based on the comparison of flow properties at the pipe exit cross-sectional area of each design. Finally, new designs of different inlet systems are proposed to reduce the secondary flow and to provide flow as uniform as possible for a compressor.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3