Real gas Brayton cycles for organic working fluids

Author:

Angelino G1,Invernizzi C2

Affiliation:

1. Politecnico of Milan Energy Department Italy

2. University of Brescia Department of Mechanical Engineering Italy

Abstract

Organizing a closed Brayton cycle in such a way that the compression process is performed in the vicinity of the critical point where specific volumes are a fraction of those of an ideal gas yields performance indices particularly attractive, mainly at moderate top temperatures. Cycle thermodynamic analysis requires the development of adequate methods for the computation of thermodynamic properties above the vapour saturation curve about the critical point. Working fluids suitable for the proposed cycle can be found in the class of organics, in particular among the newly developed, zero ozone depletion potential, chlorine-free compounds. The numerous technical and environmental requirements which a fluid must meet for practical use combined with the peculiar thermodynamic restraints limit the number of suitable fluids. Mixing two substances of different critical temperatures yields an indefinite number of fluids with tailor-made thermodynamic properties. One such mixture 0.93 HFC23 + 0.07 HFC125 (molar fraction), having tcr = 30°C, at tmax = 400°C, pmax = 150 bar, gives an efficiency above 27 per cent with heat rejection temperatures between 89 and 33°C. With a different mixture composition with a 50°C critical temperature, at the same tmax and pmax, an efficiency of 25.1 per cent is attained in a combined heat and power generation cycle with heat available in the range 53-103°C. An experimental programme to test the thermal stability of organic fluids showed that top temperatures of 380-450°C are achievable with some commercially available fluoro-substituted hydrocarbons. In view of practical applications a conversion unit based on a reciprocating engine could handle without problems the pressures and temperatures involved. The use of turbomachinery would lead to power plant of large capacity for the usual rotor dimensions or to micro-turbines at high rotating speed in the low power range.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3