Expanding fuel flexibility of gas turbines

Author:

Moliere M1

Affiliation:

1. 20 Avenue du Marechal Juin GE Energy Products France SNC Belfort Cedex 90007, France

Abstract

Gas turbines are continuous-flow engines that develop steady aerodynamics and flame kinetics. These features reduce the constraints placed on fuel properties for combustion and provide a considerable margin for clean combustion. In particular, heavy-duty gas turbines can operate on a large number of primary fuels that are available in many branches of the industry. These accessible fuels include natural gas (NG) and diesel fuel (DF), as well as a number of industry byproducts generated by the refining and petrochemical sectors, coal and oil and gas activities, steel and mining branches, and by the agricultural industry (biofuels). This fuel flexibility enhances the existing qualities demonstrated by gas turbines, such as efficiency, reliability, versatility in applications [mechanical drive, simple and combined cycle, combined heat and power (CHP)], strong integration potential [integrated gasification combined cycle (IGCC), gas to liquid (GTL)], and low emissions. As a result, gas turbines that use local fuel resources, synfuels or industrial byproducts — and are deployed in simple or combined cycles or in CHP units — can play a prominent role in the creation of reliable, clean, and energy-efficient power systems. This article provides the energy community with comprehensive information about alternative gas turbine (GT) fuels, covering volatile fuels [naphtha, natural gas liquid (NGL), condensates], weak gas fuels from the coal/iron industry [coalbed gas, coke oven gas (COG), blast furnace gas (BFG)], ash-forming oils, and hydrogen-rich byproducts from refineries or petrochemical plants. The main technical considerations essential to the success of alternative fuel applications are reviewed and key experience milestones are highlighted. A special emphasis is placed on the combustion of hydrogen in gas turbines.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference1 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3