Affiliation:
1. Istanbul Technical University Mechanical Engineering Faculty Istanbul, Turkey
Abstract
In this study, the hydrodynamics and thermodynamics of a fluidyne heat machine having three columns are analysed systematically. The mathematical model of the system is considered in three parts, that is liquid, vapour, and interfacial regions. The liquid and vapour phases are separated by an interfacial surface where evaporation and condensation occur. It is assumed that heat input and output only take place at the interfaces so that the liquid and vapour phases can be considered as lumped open systems. While the major and minor losses are considered in the liquid phase, the state of the vapour phase changes isentropically. The proposed mathematical formulation of the system is solved by a Runga—Kutta method and compared with the experimental data of a previous study. The results of the solution are in good agreement with the experimental data. It is shown that work will not be produced by the system considered in this study, and that the system only overcomes the major and minor losses.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Reference7 articles.
1. The operation of the Fluidyne heat engine at low differential temperatures
2. Carey V. P. Liquid-Vapor Phase-Change Phenomena. An Introduction to the Thermophysics of Vaporization and Condensation in Heat Transfer Equipment, 1992, p. 30 (Hemisphere Publishing Corporation, Washington DC).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献