Modelling wear and crack initiation in rails

Author:

Franklin F J1,Kapoor A1

Affiliation:

1. School of Mechanical and Systems Engineering, The University of Newcastle upon Tyne, Newcastle upon Tyne, UK

Abstract

Wear and crack initiation of steel rails is a problem of great significance to the railway industry. A high wear rate shortens the life of rails and the frequent rail replacement is expensive in terms not only of resources but also of track access time and delays affecting timetables. In addition, railhead profiles change gradually as the rails are worn and the greater the wear rate, the more often the rails need to be reground to maintain good train running performance. In contrast, a low wear rate means that cracks have time to develop in the plastically deformed rail steel and these may propagate deeper into the rails with potentially disastrous consequences. Finding the optimum combination of wear and grinding to maintain railhead profile and prevent cracks from growing is key to running a safe and cost-efficient railway. The large number of variables arising from track geometry, train dynamics, and wheel and rail profiles leads to wide variation in contact patch size and location. The two-dimensional model of ratcheting wear developed by Kapoor et al. has been developed to model the damage accumulation near the surface of the rail on the basis of a full three-dimensional contact stress distribution. Different rail steel microstructures can also be modelled and the effects of microstructure on wear and crack initiation are explored.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3