System identification and predictive control of laser marking of ceramic materials using artificial neural networks

Author:

Peligrad A A1,Zhou E1,Morton D1,Li L2

Affiliation:

1. Bolton Institute Faculty of Technology Bolton, UK

2. University of Manchester Institute of Science and Technology Laser Processing Research Centre, Department of Mechanical Engineering Manchester, UK

Abstract

Laser marking of ceramic materials is a multivariable non-linear process. Real-time control of the process requires the understanding of system dynamics and parameter interaction. In this work, direct inverse control (DIC) and non-linear predictive control (NPC) based on artificial neural networks were applied. The output variable considered for the laser clay tile-marking process was melt pool temperature. The input quantities investigated were laser power and traverse speed. The results show that the NPC accomplished a better reference tracking than the DIC. It was also found that the beam velocity and laser power could well be used to counteract disturbances.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of laser solid freeform fabrication using neuro-fuzzy method;Applied Soft Computing;2008-01

2. Multivariable predictive control of a pressurized tank using neural networks;Neural Computing and Applications;2005-09-13

3. References;Laser Cladding;2004-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3