Extracting symptoms of bearing faults from noise using a non-linear neural filter

Author:

Shao Y1,Nezu K1

Affiliation:

1. Gunma University Department of Mechanical System Engineering, Faculty of Engineering Kiryu City, Gunma, Japan

Abstract

Improving the signal-to-noise ratio is an important feature for the early detection of faults in bearings subject to large amounts of environmental noises. A method is proposed for improving the signal-to-noise ratio by adaptive neural filtering (ANF). A comparison of failure detection capabilities of a linear adaptive filter using the least mean square (LMS) algorithm and a non-linear adaptive filter using the ANF algorithm in conditions of large amounts of environmental noise is made. Experimental results show that an adaptive filter using a neural filtering algorithm is an effective means for extracting the symptoms of a bearing fault under such conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new signal analysis method after wavelet packet de-noising;2008 International Conference on Wavelet Analysis and Pattern Recognition;2008-08

2. Design of mixture de-noising for detecting faulty bearing signals;Journal of Sound and Vibration;2005-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3