Finite-element modelling of thermo-mechanical stress distribution in laser beam ceramic tile grout sealing process

Author:

Liaqat A1,Safdar S1,Sheikh M A1

Affiliation:

1. School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester, UK

Abstract

Laser tile grout sealing is a special process in which voids between the adjoining ceramic tiles are sealed by a laser beam. This process has been developed by Lawrence and Li using a customized grout material and a high power diode laser (HPDL). The process has been optimally carried out at laser powers of 60–120 W and at scanning speeds of 3–15 mm/s. Modelling of the laser tile grout sealing process is a complex task as it involves a moving laser beam and five different materials: glazed enamel, grout material, ceramic tile, epoxy bedding, and ordinary Portland cement substrate. This article presents the finite element model (FEM) of the laser tile grout sealing process. The main aim of this model is to accurately predict the thermo-mechanical stress distribution induced by the HPDL beam in the process. For an accurate representation of the process, the laser was modelled as a moving heat source. A three-dimensional transient thermal analysis was carried out to determine the temperature distribution. Temperature-dependent material properties and latent heat effects, due to melting and solidification of the glazed enamel, were taken into account in the FEM, thereby allowing a more realistic and accurate thermal analysis. The results of the thermal analysis were used as an input for the stress analysis with temperature-dependent mechanical properties. The results obtained from the FEM are compared with the published experimental results.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the effect of non-conventional laser beam geometry on material processing by finite-element modelling;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2010-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3