Reconstruction of surface velocity field using wavelet transformation and boundary-element method

Author:

Ko B1

Affiliation:

1. Autoeversystems Corporation, Landmark Tower, 837–36, Yeoksam-dong, Gangnam-Gu 135–937, Seoul, Republic of Korea,

Abstract

This paper shows the application of discrete wavelet transformation (DWT) to inverse acoustics for reconstructing the surface velocity of a noise source. This approach uses the boundary-element analysis based on the measured sound pressure at a set of field points, the Helmholtz integral equations, and wavelet transformation to reconstruct the normal surface velocity field. The reconstructed velocity field can be diverged due to the small measurement errors in the case of nearfield acoustic holography using an inverse boundary-element method. In order to bypass the instability in the inverse problem, the reconstruction process should include some form of regularization for enhancing the resolution of source images. The usual method of regularization has been the truncation of wave vectors associated with small singular values, although the order of an optimal truncation is difficult to determine. In this paper, a DWT is applied to reduce the computation time for inverse acoustics and to enhance the reconstructed surface velocity field. The computational speed-up is achieved, with solution time being reduced to 14.3 per cent.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3