An empirical study of gas penetration in full-shot gas-assisted injection moulded parts

Author:

Liu S-J1,Chang K-H1

Affiliation:

1. Chang Gung University Polymer Rheology and Processing Laboratory, Department of Mechanical Engineering Tao-Yuan, Taiwan

Abstract

Full-shot gas-assisted injection moulding has increasingly become one of the most important methods used to produce plastic components. It has the advantage of eliminating the switchover mark, which usually occurs on the surface of short-shot gas-assisted injection moulded parts. This paper is devoted to an investigation of the effects of different processing parameters on the length of gas penetration in full-shot gas-assisted injection moulded parts. The first part of this report shows how the gas penetration of moulded parts is optimized. An L'18 experimental matrix design based on the Taguchi method was conducted to investigate the processing factors that affect the length of gas penetration in full-shot moulded parts. The second part of this paper identifies the relative significance of each processing parameter on the gas penetration of moulded products. The materials used were general-purpose polystyrene and polypropylene. Experiments were carried out on an 80 ton injection-moulding machine equipped with a high-pressure nitrogen gas injection unit. For the factors selected in the main experiments, melt temperature, gas injection delay time and gas hold time were found to be the key processing parameters affecting the length of gas penetration in full-shot gas-assisted injection moulded parts. In addition, the sink mark of full-shot moulded parts decreases with the length of gas penetration. Bending strength of full-shot gas-assisted injection moulded parts is higher than that of short-shot moulded parts.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Six Sigma methods applied in an injection moulding company;International Journal of Lean Six Sigma;2014-05-27

2. Injection molding in polymer matrix composites;Manufacturing Techniques for Polymer Matrix Composites (PMCs);2012

3. Simulation of the gas-assisted injection moulding process using a viscoelastic extension to the Cross-WLF viscosity model;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2011-08-16

4. The manufacturing of thermoplastic composite parts by water-assisted injection-molding technology;Composites Part A: Applied Science and Manufacturing;2004-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3