Tool wear monitoring—an intelligent approach

Author:

Rao Ch Srinivasa1,Srikant R. R.1

Affiliation:

1. GITAM Department of Mechanical Engineering Visakhapatnam (AP), India

Abstract

Tool wear monitoring is one of the most crucial and inevitable processes in present-day manufacturing systems. With the growth of unmanned factories, the need for on-line monitoring systems is well recognized. Artificial intelligence techniques such as artificial neural networks, fuzzy logic and the neuro-fuzzy technique have proved their potential in monitoring the manufacturing processes. In shop-floor control, the condition of the cutting tool is of more concern than the actual tool wear value but, in research activities, the estimation of the actual value of the tool wear occupies a prominent place. The present work is concerned with the assessment of the tool condition and also the estimation of the tool wear value. In the present paper, artificial intelligence techniques are applied to estimate the tool condition and tool wear value on line. Kohonen's self-organizing map is applied in neural networks for estimating the tool condition. Fuzzy logic and the neuro-fuzzy technique are implemented by triangular membership functions. To assess the tool wear value, a back-propagation neural network is applied. In fuzzy logic and neuro-fuzzy techniques, the centroid method of defuzzification is applied to obtain the flank wear value. Experimental data are generated by machining EN-8 steel with a high-speed steel cutting tool. The obtained data are used to train and test the networks. To make the monitoring system user friendly, a user interface is developed using Microsoft Visual Basic 6.0.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference17 articles.

1. Du R., Zhang B., Hungerford W., Pryor T. Tool condition monitoring and compensation in finish turning using optical sensor. In Proceedings of the ASME Symposium on Mechatronics, 1993, PED-Vol. 63, pp. 245–251 (American Society of Mechanical Engineers, New York).

2. On-Line Sensing of Flank and Crater Wear of Cutting Tools

3. Tool wear and failure monitoring techniques for turning—A review

4. Criticism of Radioactive Tool-Life Testing

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3