Estimation of in-process cutting constants in ball-end milling

Author:

Zheng C M1,Junz Wang J -J1

Affiliation:

1. National Cheng Kung University Department of Mechanical Engineering Tainan, Taiwan

Abstract

Two methods are presented for the estimation of tangential, radial and axial cutting coefficients for the shearing and ploughing mechanisms from a single set of cutting forces in ball-end milling. These estimation methods are based upon the invertibility of the analytical milling force model, which considers both the shearing and the ploughing mechanisms by incorporating their respective cutting constants in the local force model. The periodic milling forces are established as the convolution integral of the differential local cutting forces and their Fourier coefficients are derived and expressed in a matrix expression as a linear function of the unknown cutting constants in terms of cutting conditions and cutter geometry. This linear expression thus leads to a systematic formulation of the estimation methods allowing the six unknown cutting constants to be determined from the measured milling forces. The first method uses the first harmonic forces as the source signal while the second method extracts the six cutting constants from the average force as well as the first harmonics. Limitations of both estimation methods are discussed. The consistency and accuracy of the estimated cutting constants are confirmed by the experimental results.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Milling Force Model for Aviation Aluminum Alloy: Academic Insight and Perspective Analysis;Chinese Journal of Mechanical Engineering;2021-02-10

2. Analytical prediction of chatter stability of end milling process using three-dimensional cutting force model;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2016-06-04

3. Generating mechanism and formation criteria of kinked surface in peripheral end milling;International Journal of Machine Tools and Manufacture;2011-10

4. Cutting force prediction for ball nose milling of inclined surface;The International Journal of Advanced Manufacturing Technology;2009-09-02

5. Consistency study on three cutting force modelling methods for peripheral milling;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2008-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3