Affiliation:
1. University of Hanover Institute for Metal Forming and Metal Forming Machine Tools Germany
Abstract
Manufacturing processes as well as products have to be improved continually to meet all the requirements of international competition. Along with economic demands, changing consumer and environmental legislation lead to increased pressure for new and advanced products and processes. Consequently, the forging industry continually tries to improve hot forging processes. Precision hot forging technology, used for the production of connecting rods, bevel gears, straight planet gears, helical gears, clutch gearing or constant velocity joints, has been improved constantly [1–3]. Precision forging is carried out with closed dies in order to guarantee the continuous quality of the workpiece and to avoid possible damage to the forged parts by clipping or piercing operations. Many variables influence the quality of the final product and the economics of the process, especially the workpiece temperature, the die temperature and the pressure dwell time. High workpiece temperatures lead to high temperatures on the surface of the dies. Therefore, the temperature load depends directly on the pressure dwell time. Excessive temperature loads inevitably lead to damage of the dies [4]. This article presents a numerical study of a new press concept using non-circular gears in the drive mechanism. The new press kinematics result in a reduced pressure dwell time in comparison with a conventional press kinematic.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference12 articles.
1. Tan X. Development of precision forged gear technology in China. In International Conference on Forging and Related Technologies (ICFT ′98), Birmingham, 28–29 April 1998, pp. 323–331.
2. Dean T. A., Eyercioglu Ö. Design and manufacture of precision gear forging dies. In International Conference and Exhibition on Design and Production of Dies and Molds, Istanbul, Turkey, 19–21 June 1997, pp. 311–316.
3. Optimized Kinematics of Mechanical Presses with Noncircular Gears
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献