Linear motor drive ultrahigh-speed injection moulding machine

Author:

Bang Y-B1,Ito S2

Affiliation:

1. Seoul National University School of Mechanical and Aerospace Engineering Seoul, Korea

2. FANUC Limited Robomachine Laboratory Yamanashi, Japan

Abstract

This paper presents a report on the development of a linear motor drive injection moulding machine for the attainment of ultrahigh-speed injection moulding. Until now it has been impossible to produce such a high speed with all-electric injection moulding machines, although the need for such ultrahigh-speed, electrically driven injection moulding machines has clearly existed. However, direct drive by linear motors may cause brief nozzle separation from the sprue bushing because of an inertia force as large as the total output thrust of the linear motors, and this momentary separation can cause molten plastic leakage. In this paper, two solutions are proposed for this inertia force problem. One is mechanical cancellation of the inertia force, the other is an increase in the nozzle contact force. Furthermore, a new nozzle contact mechanism is proposed that prevents the stationary platen bending caused by the nozzle contact force. Some experimental results on a manufactured all-electric, ultrahigh-speed injection moulding machine are presented.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference5 articles.

1. Ito S., Inaba Y., Bang Y. Driving device using linear motor. Eur. Pat. 00309196.4-2207, 2000.

2. Kuroda H. Nozzle touch mechanism for injection moulding machines (in Japanese). Jap. Pat. Applic. H9-277306.

3. Ito S., Bang Y. Injection molding machine with nozzle touch mechanism. Eur. Pat. 00306542.2-2307, 2000.

4. Development of Toggle Clamp Mechanism of All Electric Driven Plastic Injection Molding Machine.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3