Prediction of lobe growth and decay in centreless grinding based on geometric considerations

Author:

Harrison A J L1,Pearce T R A2

Affiliation:

1. University of Bristol Department of Mechanical Engineering UK

2. University of Bristol Institute of Grinding Technology UK

Abstract

The growth and decay of lobes during centreless grinding have been studied by previous researchers using physical tests, time-domain simulation and identification of the roots of the Laplace transform of the characteristic equation. In this paper, the authors have extended these latter two methods to generate complete stability diagrams encompassing the entire practical range of machine set-up angles. These diagrams indicate that by varying the set-up angles in a prescribed manner during grinding, rapid rounding of arbitrarily lobed components can be achieved. This is verified via time-domain simulation. Secondly, a novel and arguably more intuitive method of predicting the lobe growth and decay during centreless grinding is presented. The method considers the locations of the three points of contact between a lobed workpiece and the regulating wheel, the support plate and the grinding wheel. Axial symmetry is assumed. A unique circle can be drawn through these three points. The centre and radius of this circle vary continually as the workpiece rotates, in a manner dependent upon the workpiece's profile and the set-up angles. An above-average instantaneous radius leads, via machine stiffness, to a correspondingly larger grinding force and so to an increased instantaneous depth of cut. If this occurs when the trough of a lobe is being ground, the trough will become deeper and lobe growth will result. By contrast, if the instantaneous radius is below average when the trough is being ground, the lobe will decay. From this simple geometric consideration, the authors have calculated the rates of decay and growth of a range of numbers of lobes, across a wide range of set-up angles. The results are shown to agree well with those given using the previous methods.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rounding mechanism of a novel double-disc arc-contact lapping for high-precision rollers;The International Journal of Advanced Manufacturing Technology;2023-02-17

2. Profile Evolution and Cross-Process Collaboration Strategy of Bearing Raceway by Centerless Grinding and Electrochemical Mechanical Machining;Micromachines;2022-12-26

3. Investigation of a carbon fibre-reinforced plastic grinding wheel for high-speed plunge-cut centreless grinding application;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2017-02-06

4. Grinding;Chatter and Machine Tools;2014

5. Nonlinear Model for the Instability Detection in Centerless Grinding Process;Strojniški vestnik – Journal of Mechanical Engineering;2012-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3