The influence of punch blunting on the elastic indentation response

Author:

Korsunsky A. M1

Affiliation:

1. University of Oxford, Parks Road, Oxford OX1 3PJ Department of Engineering Science UK

Abstract

Elastic solutions of a family of axisymmetric problems concerning frictionless contact between a rigid punch and a semi-infinite substrate are considered using the method of Green and Zerna and of Collins. The analysis is relevant to the interpretation of experimental results in materials indentation testing, e.g. when substrate properties need to be determined from load—displacement traces, and precise information about the indenter tip shape is crucial. Commonly used solutions for ideal punch shapes, e.g. those having spherical or conical tips, may only be viewed as approximations since, in practice, indenter tips are neither perfectly round nor infinitely sharp. In order to illustrate the influence that small variations in punch shape may have on the contact behaviour, analytical solutions for a blunted Hertzian indenter and a rounded cone are obtained in parametric form, and their asymptotic behavioural the extremes of low and high loads is investigated. A smooth punch is then considered of a general shape, given by a power series, and the resulting general solution is used as a basis for developing an inverse problem formulation of the tip shape calibration procedure. The method allows the best match between the measured and predicted load-displacement dependencies to be established. An example of the application of this procedure to the analysis of some nanoindentation data is presented.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3