Analysis of a resin socket termination for a wire rope

Author:

Bradon J. E1,Chaplin C. R1,Ridge I. M. L1

Affiliation:

1. The University of Reading Department of Engineering UK

Abstract

A finite element model to determine the socket strains and resin pressures in a resin socket termination for a wire rope has been developed. This model takes account of the relative movement between the socket and the resin cone that occurs when a termination is under load. To verify the accuracy of the model, computed socket strains were compared with strain measurements both on a full-scale termination and on a laboratory-scale model. As a result of these comparisons, modifications were made to the finite element model to improve its accuracy. It was concluded that the wires were held in the socket by frictional forces which were effective only in the resin section between 10 and 50 per cent of the socket basket length (measured from the front of the socket). This conclusion was verified by further laboratory tests. It was therefore deduced that manufacturing defects in the back half of the socket would not reduce the strength of the termination, while defects in the front half are much more significant. This was also demonstrated by laboratory tests for both quasi-static and fatigue loading. These conclusions apply only to sockets of the type described in this paper and are not necessarily true for all socket designs.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Reference9 articles.

1. Feyrer K., Beck W., Becker K., Gabriel K., Hemminger R., Oplatka G., Stauske D. Stehende Drahtseile und Seilendverbindungn (Standing Wire Ropes and Rope Terminations) (in German), 1990, (pp. 186–187 (Expert Verlag, Ehningen, Germany).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3