Affiliation:
1. Zhejiang University, Hangzhou 310027 Department of Civil Engineering People's Republic of China
Abstract
The stress distribution in a rotating, spherically isotropic, functionally graded material (FGM) spherical shell that has its elastic constants and mass density as functions of the radial coordinate is exactly investigated in the paper. Three displacement functions are employed to simplify the basic equations of equilibrium for a spherically isotropic, radially inhomogeneous elastic medium. By expanding the displacement functions in terms of spherical harmonics, the basic equations are finally turned into an uncoupled second-order ordinary differential equation and a coupled system of two such equations. Exact analysis of a steadily rotating spherical shell with the material constants being power functions of the radial coordinate is carried out and a numerical example is presented.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献