Computer simulation of strain accumulation and hardening for pearlitic rail steel undergoing repeated contact

Author:

Kapoor A1,Beynon J. H1,Fletcher D I1,Loo-Morrey M1

Affiliation:

1. University of Sheffield Department of Mechanical Engineering UK

Abstract

This paper presents a validated model of plastic strain accumulation in railway rail steel under repeated wheel-rail contact. Such contacts subject the rails to severe stresses, taking the material local to the contact beyond yield, and leading to the incremental accumulation of plastic deformation (ratheting) as wheels pass. This process is at the root of several rail wear and rolling contact fatigue crack growth mechanisms. Existing plasticity models are inadequate for modelling the strain accumulation taking place in this material, which is under high hydrostatic compression (of the order of 1 GPa) and is severely anisotropic. The model described here is based on a ratcheting law derived from small-scale twin-disc rolling-sliding contact experiments and simulates tens of thousands of ratcheting cycles and the corresponding strain hardening in a few minutes on a personal computer. Results indicate that, to model these processes successfully, and to represent correctly the high levels of ductility seen in rail steels under compressive load, stress-strain data generated under high hydrostatic compression are required.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3