Flow characteristics of curing polymethyl methacrylate bone cement

Author:

Dunne N J1,Orr J F1

Affiliation:

1. The Queen's University of Belfast Department of Mechanical and Manufacturing Engineering Northern Irelan

Abstract

During polymerization, polymethyl methacrylate bone cements have complex viscoelastic characteristics. Within a short working time they transform from dough-like consistencies to solid cements. Therefore, the time at which a cement is introduced to cancellous bone surfaces and subjected to pressure is important, to achieve optimum flow and mechanical interdigitation. Achieving adequate mechanical interlock increases the area for load transfer and reduces localized bone-cement interface stresses. The aim of this study was to measure the flow characteristics for commercial bone cements as a function of time and calculate the apparent viscosities for the curing bone cements The capillary extrusion method was used to measure the rate of flow of the curing cement, by means of a melt flow index apparatus, which was manufactured in-house. The tests were conducted using nozzles of different lengths and under two loads. This enabled the power index value, n, and the pressure at the die entry, Po, to be calculated for each material with respect to time. Once the flow characteristics were determined, a series of formulae were used to calculate the shear rates, y, the shear stresses, r, and the apparent viscosities, na, of the curing bone cements. The results indicated that acrylic bone cements are non-Newtonian, pseudoplastic materials, since the power index values are less than 1.0 during the curing stage. The consistency indices, K, were calculated from the shear stress versus shear rate data. The apparent viscosities of the cements were found to increase with respect to increases in time. Clinically, it was considered desirable to inject and pressurize the cement into the medullary canal while its viscosity is relatively low in order to obtain maximum interdigitation into cancellous bone, provided adequate containment and a means of pressurization can be achieved. The pseudoplastic character of bone cements is responsible for their reduction in viscosity with increased shear rate, a property that may be exploited to enhance penetration with appropriate delivery.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3