A dynamic model of simulating stress distribution in the distal femur after total knee replacement

Author:

Shi J F1,Wang C J1,Laoui T1,Hart W2,Hall R1

Affiliation:

1. Department of Engineering and Technology, University of Wolverhampton, Telford, UK

2. New Cross Hospital, Wolverhampton, UK

Abstract

The aim of this study has been to develop a dynamic model of the knee joint after total knee replacement (TKR) to analyse the stress distribution in the distal femur during daily activities. Using MSC/ADAMS and MSC/MARC software, a dynamic model of an implanted knee joint has been developed. This model consists of the components of the knee prosthesis as well as the bones and ligaments of the knee. The femur, tibia, fibula, and patella have been modelled as mixed cortico-cancellous bone. The distal part of femur has been modelled as a flexible body with springs used to simulate the ligaments positioned at their anatomical insertion points. With this dynamic model a gait cycle was simulated. Stress shielding was identified in the distal femur after TKR, which is consistent with other investigators' results. Interestingly, higher stresses were found in the bone adjacent to the femoral component peg. This dynamic model can now be used to analyse the stress distribution in the distal femur with different load conditions. This will help to improve implant designs and will allow comparison of prostheses from different manufacturers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3