Affiliation:
1. Universitat Politècnica de Catalunya Departament de Ciència dels Materials i Enginyeria Metal-lúrgica, Escola Tècnica Superior d'Enginyers de Barcelona Barcelona, Spain
Abstract
The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characeristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopaedic surgery and orthodontics. In this work the basis of the memory effect lies in the fact that the materials exhibiting such a property undergo a thermoelastic martensitic transformation. In order to understand even the most elementary engineering aspects of the shape memory effect it is necessary to review some basic principles of the formation and the characteristics of the martensitic phase. The different properties of shape memory, superelasticity, two-way shape memory, rubber-like behaviour and a high damping capacity are reviewed. Some applications proposed in recent years are described and classified according to different medical fields.
Subject
Mechanical Engineering,General Medicine
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献