Cementing techniques in hip resurfacing

Author:

Chandler M1,Z Kowalski R S1,Watkins N D1,Briscoe A2,R New A M2

Affiliation:

1. DePuy CMW, Blackpool, UK

2. Bioengineering Science Research Group, School of Engineering Sciences, University of Southampton, Southampton, UK

Abstract

The subject of the cementing technique in hip resurfacing has been poorly studied to date. The hip resurfacing prosthesis is unique in the family of cemented prostheses because the cement mantle is blind (hidden underneath the implant) and is radiographically obscured. This presents an immediate challenge to the surgeon at the time of surgery, but also has a longer-term implication in terms of lack of post-operative clinical observation. This should be compared with total hip replacement or total knee replacement where the cement mantle can at least be partially observed both intra- and post-operatively. With this in mind, the objective of this review is, firstly, to understand the cement mantles typically achieved in current clinical practice and, secondly, to identify those factors affecting the cement mantle and to consolidate them into an improved and reproducible cementing technique. The outcome of this work shows that the low-viscosity technique can commonly lead to excessive cement penetration in the proximal femoral head and an incompletely seated component, whereas a more consistent controlled cement mantle can be achieved with a high-viscosity cementing technique. Consequently, it is recommended that a high-viscosity technique should be used to minimize the build-up of excessive cement, to reduce the temperature created by the exothermic polymerization, and to help to ensure correct seating of the prosthesis. A combination of these factors is potentially critical to the clinical success of some articular surface replacement (ASR) procedures. It is important to note that we specifically studied the DePuy ASR system; therefore only the general principles (and not the specifics) of the cementing technique may apply to other resurfacing prostheses, because of differences in internal geometry, clearance, and surgical technique.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3