Compliant-layer tibial bearing inserts: Friction testing of different materials and designs for a new generation of prostheses that mimic the natural joint

Author:

Jones E1,Scholes S C2,Unsworth A2,Burgess I C2

Affiliation:

1. Stryker Orthopaedics, Raheen Business Park, Limerick, Co Limerick, Ireland

2. Centre for Biomedical Engineering, School of Engineering, Durham University, Durham, UK

Abstract

Total joint replacements (TJRs) have a limited lifetime, but the introduction of devices that exhibit good lubricating properties with low friction and low wear could well extend this. A novel tibial bearing design, using polyurethane (PU) as a compliant layer, to mimic the natural joint, has been developed. To determine accurately the mode of lubrication under which these joints operate, a synthetic lubricant was used in all these tests. Friction tests were carried out to assess the effects of material modulus and surface roughness, together with bearing design parameters such as bearing thickness and conformity, on lubrication. Corethane 80A was the preferred material and was chosen as the compliant layer for subsequent testing. A low surface roughness resulted in lower asperity contact as the asperities were depressed by the pressurized entraining fluid and full-fluid-film lubrication was approached. The three different tibial bearing conformities (low, medium, and high) did not appear to influence the mode of lubrication and all these bearings performed with extremely low friction. Similarly, the bearing thickness effects on lubrication at the levels tested (2 mm, 3 mm, and 4 mm) were minimal, although the effects of layer thickness on interface shear stress could be expected to be significant. This study describes a series of friction tests that have been used to select the most appropriate material and to optimize the design parameters to establish optimum conditions for these compliant layer joints.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biotribology of artificial joints with artificial cartilage;Biotribology of Natural and Artificial Joints;2023

2. Some aspects of frictional measurements in hip joint simulators;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2016-05

3. The use of compliant layer prosthetic components in orthopedic joint repair and replacement: A review;Journal of Biomedical Materials Research Part B: Applied Biomaterials;2014-03-05

4. What’s next? Alternative materials for articulation in total joint replacement;Acta Biomaterialia;2012-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3