Mechanotransduction pathways of low-intensity ultrasound in C-28/I2 human chondrocyte cell line

Author:

Choi B H1,Choi M H2,Kwak M-G3,Min B-H456,Woo Z H3,Park S R2

Affiliation:

1. Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Republic of Korea

2. Department of Physiology, Inha University College of Medicine, Incheon, Republic of Korea

3. Department of General Surgery, Inha University College of Medicine, Incheon, Republic of Korea

4. Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea

5. Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea

6. Department of Molecular Science and Technology, Ajou University, Republic of Korea

Abstract

Low-intensity ultrasound (LIUS) has recently been considered to be an effective method to induce cartilage repair and/or regeneration after injury. Nevertheless, there is no study to provide a cellular mechanism or signal pathways of LIUS stimulation. The current study is designed to investigate the effects of LIUS on the mechanotransduction pathways in C-28/I2, an immortalized human chondrocyte cell line. C-28/I2 cells were treated with LIUS at an intensity of 200 mW/cm2 using Noblelife™ from Duplogen. The role of stretch-activated channels (SAC) and integrins that are most well-known mechanoreceptors on the chondrocyte cell surface was first examined in mediating the LIUS effects on the expression of type II collagen and aggrecan. When analysed by reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry, gadolinium (a specific inhibitor of SACs) or GRGDSP (a peptide inhibitor of integrins) specifically reduced the LIUS-induced elevation of type II collagen and aggrecan expressions depending on the incubation time. In addition, the LIUS treatment of C-28/I2 cells induced the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) but not p38 kinase among the members of the mitogen-activated protein kinases (MAPKs). The phosphorylation of ERK by LIUS was repressed by a specific inhibitor of the ERK pathway and integrin function. These results suggest that the LIUS signal might be mediated via canonical mechanoreceptors of SACs and integrins and subsequently through JNK and ERK pathways. The present study provides the first evidence for the activation of the mechanotransduction pathways by LIUS in human chondrocytes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3