Microchip system for monitoring microbial physiological behaviour under drug influences

Author:

Arora S1,Lim C S1,Foo J Y2,Sakharkar M K3,Dixit P4,Liu A Q1,Miao J-M3

Affiliation:

1. Biomedical Engineering Research Center, Nanyang Technological University, Singapore, Singapore

2. Division of Research, Singapore General Hospital, Singapore, Singapore

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore

4. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

Abstract

Single-step real-time high-throughput monitoring of drug influences on bacterial cell behaviour has become important with growing interests in personalized therapy and medication. Conventional microchip assemblies to perform similar work do exist. However, most of these devices have complex set-ups incorporating micromixers, separators, pumps, or valves. These microcomponents can sometimes damage the entities being monitored because of the creation of unfavourable biological environments. This paper presents a microchip-based system that enables single-step mixing of two solutions in various ratios, without the need for additional microcomponents such as mixers and pumps, in order to screen effectively their combinatory effects on cell outcomes. In this work, in-vitro experiments were carried out using ampicillin at various concentrations to investigate their effects on Escherichia coli ( E. coli). Results showed that the microchip provided effective screening, which yielded useful results such as effective dosages, ineffective dosages, and other possible outcomes; for instance, in this case, the occurrence of adaptive mutation of the bacteria at certain drug concentrations. Comparative microbiological laboratory tests were carried out as standard for confirmation of the results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3