Automated In-Vitro Testing of Orthopaedic Implants: A Case Study in Shoulder Joint Replacement

Author:

Geary C1,O'Donnell G E2,Jones E3,FitzPatrick D4,Birkinshaw C1

Affiliation:

1. Department of Materials Science & Technology, University of Limerick, Limerick, Ireland

2. Department of Mechanical & Manufacturing Eng., Trinity College Dublin, Dublin, Ireland

3. Stryker Osteonics, Raheen, Limerick, Ireland

4. School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Ireland

Abstract

This investigation presents the design and preliminary validation of a single station simulator with biaxial motion and loading designed to mimic the kinematics of the glenohumeral joint during arm abduction in the scapular plane. Although the design of the glenoid holder allows the glenoid component to translate in all three axes, it is primarily loaded axially, which brings it into contact with the oscillating humeral head, but is also loaded superiorly to simulate common subluxation of the humeral head. Simulating arm abduction in the scapular plane simplifies component alignment and removes the need for anterior—posterior loading, thereby creating a stable joint without the need to simulate capsular constraints. In this more physiologically accurate simulator design, the load and motion profiles influence the contact kinematics, but the wear path is ultimately determined by the conformity and constraint designed into the bearing couple. The wear data are determined and correlated with clinically retrieved glenoid components, as well as previously reported in-vitro studies, thus verifying use of the simulator in testing alternative materials and designs. The key design features, as well as the improvements proposed through this study, can be incorporated into the design of test fixtures for any other orthopaedic implant such as the hip, knee, spine, elbow, and finger.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3