Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering

Author:

Guarino V1,Ambrosio L1

Affiliation:

1. Institute of Composite and Biomedical Materials (IMCB-CNR), National Research Council, Naples, Italy

Abstract

The development of structures with a predefined multiscale pore network is a major challenge in designing tissue engineering (TE) scaffolds. To address this, several strategies have been investigated to provide biocompatible, biodegradable porous materials that would be suitable for use as scaffolds, and able to guide and facilitate the cell activity involved in the generation of new tissue regeneration. This study seeks to provide an overview of different temperature-driven process technologies for developing scaffolds with tailored porosity, in which pore size distribution is strictly defined and pores are fully interconnected. Here, three-dimensional (3D) porous composite scaffolds based on poly(∊-caprolactone) (PCL) were fabricated by thermally induced phase separation (TIPS) and by melt co-continuous polymer blending (MCPB). The combination of these processes with a salt leaching technique enables the establishment of bimodal porosity within the polymer network. This feature may be exploited in the development of substrates with fully interconnected pores, which can be used effectively for tissue regeneration. Various combinations of the proposed techniques provide a range of procedures for the preparation of porous scaffolds with an appropriate combination of morphological and mechanical properties to reproduce the requisite features of the extracellular matrix (ECM) of hard tissues such as bone.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3