Mechanical properties of bovine articular cartilage under microscale indentation loading from atomic force microscopy

Author:

Park S1,Costa K D2,Ateshian G A2,Hong K-S1

Affiliation:

1. School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea

2. Department of Biomedical Engineering, Columbia University, New York, USA

Abstract

Atomic force microscopy (AFM) techniques have been increasingly used for investigating the mechanical properties of articular cartilage. According to the previous studies reporting the microscale Young's modulus under AFM indentation tests, the Hertz contact model has been employed with a sharp conical tip indenter. However, the non-linear microscale behaviour of articular cartilage could not be resolved by the standardized Hertz analysis using small and sharp atomic force microscope tips. Therefore, the objective of this study was to evaluate the microscale Young's modulus of articular cartilage more accurately through a non-Hertzian approach with a spherical tip of 5 μm diameter, and to characterize its microscale mechanical behaviour. This methodology adopted in the present study was proved by the consistent values between the microscale (2 per cent, about 9.3 kPa; 3 per cent, about 17.5 kPa) and macroscale (2 per cent, about 8.3 kPa; 3 per cent, about 18.3 kPa) Young's moduli for 2 per cent and 3 per cent agarose gel ( n = 100). Therefore, the microscale Young's modulus evaluated in this study is representative of more accurate measurements of cartilage stiffness at the 600 nm deformation level and corresponds to approximately 30.9 kPa ( n = 100). Furthermore, on this level of the microscale deformation, articular cartilage showed depth-dependent and frequency-independent behaviour under AFM indentation loading. These findings reveal the microscale mechanical behaviour of articular cartilage more accurately and can be employed further to design microscale structures of chondrocyte-seeded scaffolds and tissue-engineered cartilage by evaluating their microscale properties.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3