The internal pressure and stress environment of the scoliotic intervertebral disc — a review

Author:

Meir A1,McNally D S2,Fairbank J C1,Jones D1,Urban J P3

Affiliation:

1. Nuffield Department of Orthopaedic Surgery, Oxford, UK

2. Physiology Laboratory, Oxford University, Oxford, UK

3. Institute of Biomechanics, University of Nottingham, Nottingham, UK

Abstract

The aetiology, in terms of both initiation and progression, of the deformity in idiopathic scoliosis is at present unclear. Even in neuromuscular cases, the mechanisms underlying progression are not fully elucidated. It is thought, however, that asymmetrical loading is involved in the progression of the disease, with evidence mainly from animal studies and modelling. There is, however, very little direct information as to the origin or mechanism of action of these forces in the scoliotic spine. This review describes the concept of intervertebral disc pressure or stress and examines possible measurement techniques. The biological and mechanical consequences of abnormalities in these parameters are described. Future possible studies and their clinical significance are also briefly discussed.Techniques of pressure measurement have culminated in the development of ‘pressure profilometry’, which provides stress profiles across the disc in mutually perpendicular axes. A hydrated intervertebral disc exhibits mainly hydrostatic behaviour. However, in pathological states such as degeneration and scoliosis, non-hydrostatic behaviour predominates and annular peaks of stress occur. Recent studies have shown that, in scoliosis, high hydrostatic pressures are seen with asymmetrical stresses from concave to convex sides. These abnormalities could influence both disc and endplate cellular activity directly, causing asymmetrical growth and matrix changes. In addition, disc cells could be influenced via nutritional changes consequent to end-plate calcification.Evidence suggests that the stress environment of the scoliotic disc is abnormal, probably generated by high and asymmetrical loading of non-muscular origin. If present in the scoliotic spine during daily activities, this could generate a positive feedback of cellular changes, resulting in curve progression. Future advances in understanding may rely on the development of computer models owing to the difficulties of in-vivo invasive measurements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3